Effective Modeling of Encoder-Decoder Architecture for Joint Entity and Relation Extraction
نویسندگان
چکیده
منابع مشابه
Modeling Joint Entity and Relation Extraction with Table Representation
This paper proposes a history-based structured learning approach that jointly extracts entities and relations in a sentence. We introduce a novel simple and flexible table representation of entities and relations. We investigate several feature settings, search orders, and learning methods with inexact search on the table. The experimental results demonstrate that a joint learning approach sign...
متن کاملSegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation
We present a novel and practical deep fully convolutional neural network architecture for semantic pixel-wise segmentation termed SegNet. This core trainable segmentation engine consists of an encoder network, a corresponding decoder network followed by a pixel-wise classification layer. The architecture of the encoder network is topologically identical to the 13 convolutional layers in the VGG...
متن کاملA Correlational Encoder Decoder Architecture for Pivot Based Sequence Generation
Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languag...
متن کاملEntity-Focused Sentence Simplification for Relation Extraction
Relations between entities in text have been widely researched in the natural language processing and informationextraction communities. The region connecting a pair of entities (in a parsed sentence) is often used to construct kernels or feature vectors that can recognize and extract interesting relations. Such regions are useful, but they can also incorporate unnecessary distracting informati...
متن کاملTable Filling Multi-Task Recurrent Neural Network for Joint Entity and Relation Extraction
This paper proposes a novel context-aware joint entity and word-level relation extraction approach through semantic composition of words, introducing a Table Filling Multi-Task Recurrent Neural Network (TF-MTRNN) model that reduces the entity recognition and relation classification tasks to a table-filling problem and models their interdependencies. The proposed neural network architecture is c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2020
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v34i05.6374